Global Advanced Research Journal of Medicine and Medical Science (ISSN: 2315-5159) Vol. 4(6) pp. 277-280, June, 2015 Available online http://garj.org/garjmms
Copyright © 2015 Global Advanced Research Journals

Full Length Research Paper

Oral or Intramuscular Vitamin D Replacement?

Mohammad A Mustafa¹ and Ibtisam M Jali²*

¹king Abdulaziz University, Jeddah, Saudi Arabia, medical resident at king Abdulaziz university hospital ²king Abdulaziz University, Jeddah, Saudi Arabia, Assistant professor internal medicine and rheumatology at king Abdulaziz University

Accepted 29 June, 2015

Vitamin D deficiency has been shown to be extremely common condition even in sunny climate. We conducted a retrospective analysis on 123 cases to compare oral versus intramuscular cholecalciferol replacement in cases of vitamin D deficiency as well as different doses of intramuscular supplement as assessed by serum levels of total 25 hydroxy vitamin D3. There was a significant increase in vitamin D level after therapy in all regimens (oral, intramuscular 300,000 IU and 600,000 IU). However, the difference in percent change in vitamin D level as a result of therapy was not significant between the 3 groups.

Keywords: Vitamin D deficiency, replacement, cholecalciferol, intramuscular, oral.

INTRODUCTION

Vitamin D deficiency has gained a lot of importance beyond that of calcium metabolism, recently, its involvement has been extended to other (extra-skeletal) disease areas, such as cancer, cardiovascular diseases, energy metabolism and autoimmune diseases (Balvers et al., 2015).

All adults aged 50–70 and 70+ year require at least 600 and 800 IU/d, respectively, of vitamin D. Whether 600 and 800 IU/d of vitamin D are enough to provide all of the potential nonskeletal health benefits associated with vitamin D is not known at this time (Holick et al., 2011).

In cases of vitamin D deficiency replacement can be oral with 50,000 IU of vitamin D2 or vitamin D3 once a week for 8 weeks. (Holick et al., 2011) or intramuscular 300,000 IU (Nugent et al., 2010) or 600,000 IU (Diamond et al., 2005)

The aim of our study is to compare different method of vitamin D replacement, oral, intramuscular 300,000 IU and 600,000 IU

METHODS

The study includes 129 cases with vitamin D deficiency. Medical nurses in our institute. They were assigned to three regimens of vitamin D replacement therapy; cholecalciferol 50,000 IU weekly for 6-8 weeks, annual 300 IU, and annually 600 IU. Serum 25- hydroxyl vitamin D3 was measured only once around 3 months after replacement. Table 1 summarizes the baseline characteristics of the participants according to regimen of replacement therapy.

^{*}Corresponding Author E-mail: black shark11323@hotmail.com

	Weekly (n=46)	Annual (300) (n=52)	Annual (600) (n=25)	Total (n=123
Age (years)	24-51	33-47	29-49	24-51
Sex				
Males (%)	2 (4.3)	2 (3.8)	3 (12.0)	7 (5.7)
Females (%)	44 (95.7)	50 (96.2)	22 (88.0)	116 (94.3)
Vitamin D <25 ng/mL before therapy (%)	24 (52.2)	23 (44.2)	14 (56.0)	61 (49.6)

Table 1. Baseline characteristics of the participants, according to regimen of vitamin D replacement

Table 2. Comparison between vitamin level before and after vitamin D replacement therapy according to regimen of replacement

Vitamin D replacement therapy	Before therapy Mean±SD	After therapy Mean±SD	p-value
Weekly	26.86±14.45	57.30±31.06	< 0.001
Annual (300 IU)	27.03±14.10	46.32±24.37	< 0.001
Annual (600 IU)	27.42±15.07	49.14±32.80	0.001

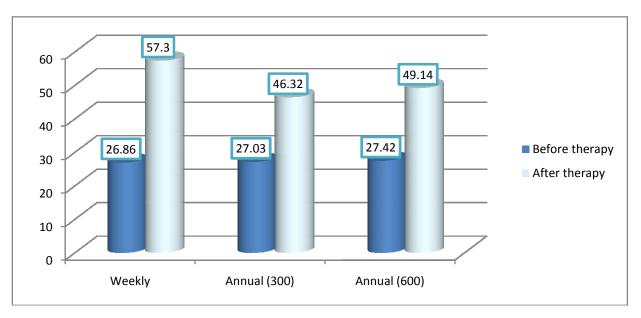


Figure 1. Comparison between vitamin level before and after vitamin D replacement therapy according to regimen of replacement

RESULTS

The study includes 129 cases with vitamin D deficiency. Follow up results of vitamin D were unavailable for 6 cases. Thus, the results described only 123 cases. They were assigned to three regimens of vitamin D replacement therapy; cholecalciferol 50,000weekly for 6-8 weeks, annual 300 IU, and annuall 600 IU. Table 2 and figure 1 present the results of vitamin D level before and after therapy in the three different groups of therapy.

It is evident that there was a significant increase of vitamin D level after therapy in all of the three compared regimens. Figure 2, shows that the percent change of vitamin D level as a result of vitamin D replacement therapy ranged between 113% for those treated with annual regimen of a dose of 300 IU to 168.6% for those treated with weekly regimen. However, the difference between percent change in vitamin D level as a result of therapy was not significant between the three regimens, p=0.348.

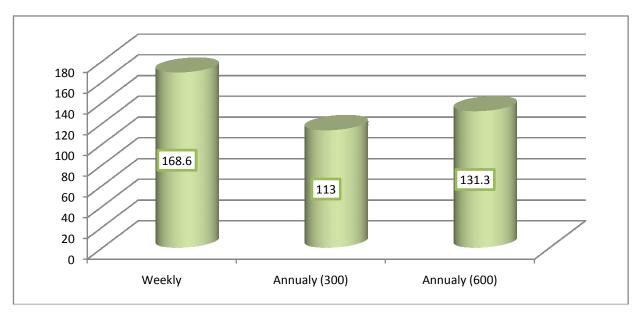


Figure 2. Comparison between different regimens of vitamin D replacement therapy regarding percent change in the vitamin D level.

DISCUSSION

Vitamin D deficiency is now recognized as a pandemic. The major cause of vitamin D deficiency is the lack of appreciation that sun exposure in moderation is the major source of vitamin D for most humans. Very few foods naturally contain vitamin D, and foods that are fortified with vitamin D are often inadequate (Holick et al, 2008). Vitamin D is a hormone, not a vitamin. The skin is responsible for producing vitamin D. During exposure to sunliaht. ultraviolet radiation penetrates into the provitamin D3 to epidermis and photolyzes previtamin D3. Previtamin D3 can either isomerize to vitamin D3 or be photolyzed to lymisterol and tachysterol. Vitamin D is also sensitive to sunlight and is photolyzed to 5, 6-transvitamin D3, suprasterol I, and suprasterol II. Once formed, vitamin D3 enters the circulation and is sequentially metabolized to 25-1,25-dihydroxyvitamin D3 (1,25hydroxyvitamin D3and [OH]2-D3) (Holick et al, 1987). However, with changing life style nowadays, we have observed vitamin D deficiency in a sunny climate in which Lack of exposure to sunlight, outdoor activities under the sun are major contributor that (Bener et al., 2009). serum 25 hydroxyvitamin D (25(OH)D) concentration of 30 ng/mL (75 nmol/L) should be a minimum goal to achieve in older adults (Judge et al., 2014).

Vitamin D deficiency has gained a lot of importance beyond that of calcium metabolism, recently, its involvement has been extended to other (extra-skeletal) disease areas, such as cancer, cardiovascular diseases, energy metabolism and autoimmune diseases (Balvers et al., 2015). Vitamin D improve cognitive function and behavior in some brain disorders such as attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior. (Patrick et al., 2015). The increasingly reported association of vitamin D deficiency is of a great interest for rheumatologist, vitamin D deficiency is associated with a higher disease activity in systemic lupus erythematosus (Yap et al., 2015) and rheumatoid arthritis (Raczkiewicz et al., 2015)

Vitamin D replacement should be done to achieve serum 25 hydroxyvitamin D (25(OH)D) concentration of 30 ng/mL (75 nmol/L) and replacement can be orally or intramuscular as mentioned before.

In our current study we aim to compare which way is better oral or parenteral replacement and we get the following results it is evident that there was a significant increase of vitamin D level after therapy in all of the three compared regimens. However, the difference between percent change in vitamin D level as a result of therapy was not significant between the three regimens, p=0.348.

Our result is similar to other studies looking at that outcome of oral versus intramuscular supplementation, as in comparing single intramuscular 600,000IU with oral, regardless of the route of administration, the oral formulation displayed a rapid serum bioavailability and is therefore initially more effective in increasing 25(OH) D serum levels than the equivalent intramuscular dose, but the latter produced a sustained and gradual increase during the 4-month observation period (Cipriani et al., 2013).

Other trial also showed that there were no significant differences in terms of the type of supplementation received, although oral supplementation showed a better trend of increment during the observation period

compared to the intramuscular administration (Falasca et al., 2014)

Also another trial showed the same result that both regimens were considerably effective, safe and practical in treating hypovitaminosis D. Although it revealed superiority of oral route, at least at early short time (Zabihiyeganeh et al., 2013)

On the other hand, another trial showed that intramuscular application seems to be more efficient because of serum 25 (OH)D levels increased linearly and all patients reached the optimal level of vitamin D at 12th week. In Oral group, presumably because of gastrointestinal factors levels began to decrease after 6 weeks. (Tellioglu et al., 2012)

Given the potential harmful effects reported in trials that used huge doses. However, these studies, even though randomized, double-blind, and placebo controlled, lack important information concerning, for example, the distribution of risk factors for falls in the 2 arms (cognitive impairment, drug use, units of alcohol consumed, and so on); moreover, the mechanism leading to an increased fracture incidence immediately after vitamin D administration still remains obscure. Therefore, further studies are needed to definitively solve this issue (Cipriani et al., 2013).

Our study has few limitations, Small sample size, retrospective design, Measurement of vitamin D level only once and short follow up period.

In conclusion, there was a significant increase of vitamin D level after therapy in all of the three compared regimens oral or intramuscular. However, the difference between percent changes in vitamin D level as a result of therapy was not significant between the three regimens. A future study in a prospective design with longer follow-up duration and toxicity monitoring is warranted. We prefer the weekly oral route for rapid rise in vitamin D level and awaiting for further study to address that issue of increased fracture risk with high dosage regimens.

REFERENCES

Balvers MG, Brouwer-Brolsma EM, Endenburg S, de Groot LC, Kok FJ, Gunnewiek JK (2015). Recommended intakes of vitamin D to optimise health, associated circulating 25-hydroxyvitamin D concentrations, and dosing regimens to treat deficiency: workshop report and overview of current literature. J. Nutr. Sci. 25(4):e23.

- Bener A, Al-Ali M, Hoffmann GF (2009). Vitamin D deficiency in healthy children in a sunny country: associated factors. Int. J. Food Sci. Nutr. 60 Suppl 5:60-70.
- Cristiana Cipriani, Elisabetta Romagnoli, Jessica Pepe, Stefania Russo, Luciano Carlucci, Sara Piemonte, Luciano Nieddu, Donald J. McMahon, Ravinder Singh, Salvatore Minisola (2013). Long-Term Bioavailability After a Single Oral or Intramuscular Administration of 600,000 IU of Ergocalciferol or Cholecalciferol: Implications for Treatment and Prophylaxis. J. Clin. Endocrinol. Metab., 98(7):2709–2715.
- Diamond TH, Ho KW, Rohl PG, Meerkin M (2005). Annual intramuscular injection of a megadose of cholecalciferol for treatment of vitamin D deficiency: efficacy and safety data. Med. J. 183(1):10-2.
- Falasca K, Ucciferri C, Nicola M, Vignale F, Biase J, Vecchiet J (2014). Different strategies of 25OH vitamin D supplementation in HIV-positive subjects International Journal of STD and AIDS. 25(11) 785–792
- Holick MF, Binkley NC, Bischoff-Ferrari HA, et al (2011). Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. *J. Clin. Endocrinol. Metab.* 96(7):1911-1930
- Holick MF, Chen TC (2008). Vitamin D deficiency: a worldwide problem with health consequences1– 4. Am. J. Clin. Nutr. 87(suppl):1080S–
- Holick MF, Smith E, Pincus S (1987). Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis. Arch. Dermatol. 123(12):1677-1683a.
- Judge J, Birge S, Gloth F, Heaney RP, Hollis BW, Kenny A, Kiel DP, Saliba D, Schneider DL, Vieth R (2014). Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. J. Am. Geriatr. Soc. 62(1):147.
- Nugent C1, Roche K, Wilson S, Fitzgibbon M, Griffin D, Nichaidhin N, Mulkerrin E (2010). The effect of intramuscular vitamin D (cholecalciferol) on serum 25OH vitamin D levels in older female acute hospital admissions. Ir J Med Sci. 179(1):57-61
- Raczkiewicz A1, Kisiel B, Kulig M, Tłustochowicz W (2015). Vitamin D status and its association with quality of life, physical activity, and disease activity in rheumatoid arthritis patients. J. Clin. Rheumatol. 21(3):126-130.
- Rhonda P Patrick, Bruce N Ames (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 29:2207-2222.
- Tellioglu A, Basarana S, Guzela R, Seydaoglub G (2012). Efficacy and safety of high dose intramuscular or oral cholecalciferol in vitamin D deficient/insufficient elderly. Maturitas. 72: 332–338
- Yap KS, Northcott M, Hoi AB, Morand EF, Nikpour M (2015). Association of low vitamin D with high disease activity in an Australian systemic lupus erythematosus cohort. Lupus Sci. Med. 2(1):e000064.
- Zabihiyeganeh M, Jahed A, Nojomi M (2013). Treatment of hypovitaminosis D with pharmacologic doses of cholecalciferol, oral vs intramuscular; an open labeled RCT. Clin. Endocrinol. 78: 210–216