Full Length Research Paper

Evaluation of Reference Evapotranspiration Estimation for Arid Sites with Only Temperature Records

Abdulaziz Alharbi¹ and Ahmad Alzoheiry¹²

¹Plant Production and Protection Department, Agricultural College, Qassim University, KSA.
²Department of Agricultural Eng. & Natural Resources, College of Agriculture, Damanhour University, Egypt.

Accepted 02 January, 2018

To estimate the actual evapotranspiration for any plant, it is necessary to calculate reference evapotranspiration (ET₀), because it gives an indication of the plant water requirement to complete its life cycle. Reference evapotranspiration was calculated using 4 models and compared with FAO-56 Penman-Monteith (PM) depending on weather data collected from an in-situ meteorological station at Buariydah, Qassim region, Saudi Arabia. Predictions of the four models were compared with the PM prediction by using the Mean Absolute error and correlation analysis. From the four equations used, the Jensen Haise equation gave the closest prediction to PM prediction and it was the most consistent equation in the predictions throughout the year. The Baney-Criddle equation also gave prediction close to the PM prediction but the error in its predictions was greater in summer than in winter. Both Hargreaves and Samani and Thornthwait equations overestimated the values of ET₀ when compared with PM prediction.

Keywords: Evapotranspiration, weather, Temperature Records.

INTRODUCTION

Management of irrigation water is one of the main issues faced by farmers all over the world, and this has become more important in arid areas were water scarcity is dominant. Water amount, ground water management, fuel, fertilizers need and future planning of the agricultural production process all depend on the predictions of irrigation requirement, which depend mainly on the type of plant and predicted reference evapotranspiration (ET₀).

Evapotranspiration is used to explain the amount of plant transpiration and soil evaporation, and it indicates the amount of water required by the plant to complete its life cycle. Evapotranspiration depends on many weather factors (solar radiation, air temperature and humidity, and wind speed) and some crop factors such as type and growth stage. ET₀ is required to estimate the actual evapotranspiration of any plant and is defined as evapotranspiration from a wide surface of green grass actively growing uniformly in height and completely covering the ground, with no water shortage (Allen et al., 1998). Different methods have been proposed to estimate ET₀, and are classified as temperature-based (Baney-Criddle, 1950; Hargreaves and Samani, 1985), radiation-based (Jensen and Haise, 1963) and a combination of both (Penman, 1948). The Penman equation has physical basis, modified by Monteith (1965), and is called the Penman-Monteith equation. This method has been recommended by many researchers (Jensen et al., 1990; Yoder et al., 2005; Mcmahon et al., 2012) in humid environment. Er-
Raki et al. (2010) reported that the radiation-based methods may perform poorly under arid and semi-arid conditions, and the values of the radiation-based methods were too high when compared with the Penman-Monteith equation (Xu and Singh, 2002). Tukimat et al. (2012) reported that radiation based methods yielded better performance when compared with temperature methods in the north of peninsular Malaysia, and the radiation based methods produced similar evapotranspiration values to the Penman-Monteith equation. However, in Hungary, temperature methods such as Shuttleworth-Wallace, Blaney-Criddle and Makkink models were found to be closest to the Penman-Monteith method (Racz et al., 2015). With the use of radiation methods such as Jensen-Heise model (JH):

\[
ET_o = \frac{0.400 \Delta (R_n - G) + 0.600}{\Delta + \gamma (1 + 0.34 u_2)}
\]

Where, \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)); \(R_n \) is the net radiation (MJm\(^{-2}\)day\(^{-1}\)); \(G \) is the soil heat flux density (MJm\(^{-2}\)day\(^{-1}\)); \(\gamma \) is the slope vapor pressure (kPa°C\(^{-1}\)); \(T_a \) is the mean daily air temperature at 2 m height (°C); \(u_2 \) is the wind speed at 2 m height (ms\(^{-1}\)); \(\Delta \) is the psychometric constant (kPa°C\(^{-1}\)); \(e_a \) is the saturation vapor pressure (kPa); and \(e_s \) is the actual vapor pressure (kPa).

Blaney-Criddel model (BC):

The Blaney-Criddel model (BC) is one of the simplest methods which depends on temperature data only, for calculating \(ET_o \) and can be expressed as:

\[
ET_o = kp(0.46T_a^3 + 8.13)
\]

Where, \(p \) is the percentage of total daytime hours for period out of the total daytime hours of the year; and \(k \) is the monthly consumptive use coefficient, depending on location, season and plant type.

Hargreaves-Samani model (HS):

The Hargreaves (1975) equation was modified by Hargreaves and Samani (1985) and used for the estimation of \(ET_o \) and the proposed equation was:

\[
ET_o = aR_aT^{1/2}(T_a + 17.8)
\]

Where, \(a \) is a parameter equal to 0.0023; \(R_a \) is the extra-terrestrial radiation (MJm\(^{-2}\)day\(^{-1}\)); \(T \) is the average daily temperature (°C); and \(D \) is the maximum and minimum daily temperature (°C).

Jensen-Heise model (JH):

The Jensen-Heise model is based on energy balance and was reported by James et al. (1988) as:

\[
ET_o = \left(1 - T_a^4\right)K_r R_a T^{0.5}
\]

Where, \(C_r \), \(T \), and \(K_r \) are standard coefficients.

Thornthwait model (TH):

Thornthwait (1948) model depends on the relationship between evapotranspiration and mean air temperature, and the Thornthwait formula is as follows:
\[\text{ET}_0 = 16N_m \left(\frac{10T_m}{a} \right) \]

Where, \(N_m \) is correction coefficient for light hours in each day; \(T_m \) is average of monthly temperature (°C); and \(a \) is the coefficient depending on the annual temperature index.

The maximum absolute error for calibration and evaluation is defined as:

\[\text{MAE} = \max \{|O_i - E_i|\} \]

Where, \(O \) is \(\text{ET}_0 \) from PM and \(E \) is the \(\text{ET}_0 \) from another method.

RESULTS

The ET\(_0\) values of a typical year were plotted for each of the chosen equations together with the values of ET\(_0\) predicted using the PM equation and the monthly average of prediction using the PMA equation. The BC equation seems to underestimate the values of ET\(_0\) when compared with the PM equation. The underestimation was higher during spring and summer than in the other seasons of the year. The JH equation predictions were closer to the value predicted using the PM equation during summer and spring but the prediction seemed to underestimate ET\(_0\) in the winter season (Figure 1). Overall, the JH equation still underestimated the values of ET\(_0\) when compared with the PM equation for all the seasons of the year.

Figure 2 shows the ET\(_0\) values of a typical year predicted using the HS (ET\(_0\)HS) and TH equations. Both equations over-estimated the ET\(_0\) values throughout the year but the TH equation had higher error as compared to all the evaluated equations, especially in the summer season (Figure 2).

The mean absolute error of each equation prediction as compared to the PM equation predictions is shown in Table 1. The minimum MEA is related to the prediction derived from the JH and BC equations, while the values of MAE for both HS and TH predictions increased sharply. The performances of the equations were not constant throughout the year when MAE was calculated for each season alone; the BC equation was the closest to the PM equation in winter with a MAE of 0.903, while the highest error in the prediction was related to the HS equation with MAE value of 5.74. The value of the MOE was higher in summer and spring for all the equations except JH. The maximum error in prediction was during summer for the TH equation with a value of 115.9.

The overall MAE shows that both HS and TH equations overestimated the \(\text{ET}_0 \) values considerably and using them would result in an inaccurate estimation of the \(\text{ET}_0 \). The errors of both BC and JH were significantly less as compared to the other two equations, with MAE values of 1.68 and 1.62, respectively. Although, the MAE of both equations are not significantly different from each other, the results indicate that, the JH equation was more successful in predicting ET\(_0\) throughout the year, where the values of MAE of the seasons ranged from a minimum of 1.6 in spring to a maximum of 1.74 in winter. For BC, the values of MAE increased in summer and spring to 2.58 and 2.15, respectively. Both equations showed a tendency to underestimate the ET\(_0\) values as compared to the PM equation but JH maintained a trend of underestimation all over the year, while BC estimation errors were significantly higher in summer and spring than in winter and autumn.

Correlation analysis

An analysis of the correlation between the values of ET\(_0\) predicted using the evaluated and PM equations showed similar trends with the MAE analysis. The slope of the correlation line predicted between the values of PM and TH was 15.46, indicating a tendency to overestimate the values of ET\(_0\). The same trend was noticed for the slope of the correlation line between the values of HS and PM with a slope value of 2.44. The correlation with two other equation values resulted in a line with a slope indicating underestimation with a slope value of 0.58 and 0.94 for BC and JH equations, respectively. The predicted correlation lines are shown in Figures 3 and 4. The correlation analysis confirms the more accurate predictions of JH equation compared to all other tested equations and the slope of 0.94 was the closest to one, in all the slopes of the evaluated equations.

DISCUSSION

The results of the current study suggest that, although the BC equation is a very simple equation and it can give a preliminary estimate of the reference evapotranspiration, it does not perform equally throughout the year, and because of its nature of averaging over a monthly period, it misses the peak and day-to-day fluctuation in the reference evapotranspiration which may be suitable for long term planning of water amount and irrigation needs, but it is not suitable for daily irrigation management and predictions.

The JH equation has the advantage of averaging over a period of time without some of its disadvantages. By averaging over a period of five days, the equation is less sensitive to sudden temperature changes as compared to the TH equation, but it responds better to changes in weather conditions compared to the BC equation.

Fernandes et al. (2012) obtained a different result when they evaluated the predictions of six equations as compared to PM predictions. They found that predicted values of the equations such as HS were closer to the values predicted by the PM equation as compared to the JH equations, which was due to the presence of terms accounting for interaction between solar radiation and air moisture in the HS equation. In this study, the results of the JH equation were closer to the prediction of PM which is
Figure 1: Predicted values of E_{To} of BC and JH equations plotted along predicted values using the PM equation.
Figure 2: Predicted values of ET$_0$ of HS and TH equations plotted along predicted values using the PM equation.

Table (1): The MAE of the reference evapotranspiration prediction for each of the equations compared to the reference evapotranspiration prediction of PM.

<table>
<thead>
<tr>
<th></th>
<th>ET HS</th>
<th>ET BC</th>
<th>ETJH</th>
<th>ETTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE overall</td>
<td>10.9461</td>
<td>1.681113</td>
<td>1.624258</td>
<td>46.22257</td>
</tr>
<tr>
<td>Winter</td>
<td>5.735559</td>
<td>0.903327</td>
<td>1.741561</td>
<td>2.921628</td>
</tr>
<tr>
<td>Spring</td>
<td>13.79226</td>
<td>2.153678</td>
<td>1.589553</td>
<td>47.55168</td>
</tr>
<tr>
<td>Summer</td>
<td>16.43075</td>
<td>2.577905</td>
<td>1.455683</td>
<td>115.9147</td>
</tr>
<tr>
<td>Autumn</td>
<td>7.88691</td>
<td>1.100825</td>
<td>1.705134</td>
<td>21.29074</td>
</tr>
</tbody>
</table>
Figure 3: The correlation line predicted between PM, JH and BC.
Four different ET₀ predicted by PM. This may be attributed to the very low level of relative humidity in the study region, which minimized the effect of radiation atmosphere interaction, and the high temperature fluctuations, which made the terms added to the atmospheric interaction to cause overestimation of the values by HS equation.

CONCLUSIONS

Four different ET₀ empirical equations were evaluated. All the chosen equations employed the location of the site and temperature records to drive the ET₀ predictions which were compared with the values of ET₀ predicted by PM. The predictions of the JH model were the closest to the PM predictions and this was consistent throughout the year. The BC equation was closer in its prediction to PM than both the HS and TH models. The results indicate the possibility of using the JH model to predict values of ET₀, to generate historical records for arid zones with only temperature records.

REFERENCES

